Einsatzgebiete von Predictive Analytics in den Bereichen Produktion und Logistik

In der heutigen Welt gibt es eine große Menge an Daten für Unternehmen, die in der Lage sind, Informationen zu sammeln. Dies gibt ihnen einen Vorteil gegenüber ihren Wettbewerbern, um festzustellen, welche Bereiche ihrer Dienstleistungen und Produkten sie verbessern müssen und wo der Umsatz hätte steigen oder sinken können. Die Verwendung von Daten hilft Unternehmen, große Mengen an Geld zu sparen, bessere Marketingstrategien zu entwickeln, ihre Effizienz zu verbessern, das Geschäftswachstum zu unterstützen und sich von anderen Wettbewerbern in der Branche zu unterscheiden. Es gibt eine ganze Reihe von Möglichkeiten, wie Predictive Analytics genutzt werden kann, um fundierte Unternehmens-Entscheidungen zu treffen.

Hierbei gibt es verschiedene Möglichkeiten, Predictive Analytics für ein Unternehmen einzusetzen:

Einsatz von Predictive Analytics in der Fertigung

Hersteller sind an einer bestmöglichen Qualitätssicherung interessiert, ebenso aber auch an der Sicherstellung einer optimalen Funktion ihrer Fertigungsanlagen (Verfügbarkeit, Effizienz des Personals, rechtzeitige und exakte Messungen). Mit Predictive Analytics ist es möglich, nicht nur die Fertigungsqualität zu verbessern und den Bedarf im gesamten Werk und Unternehmen zu antizipieren, sondern auch den Ruf der Marke zu verbessern, die Konkurrenz zu übertreffen und die Sicherheit der Verbraucher zu gewährleisten. Predictive Analytics ist ein weit verbreitetes Thema in der Fertigung und steht in direktem Zusammenhang mit mehreren kritischen Fertigungsprozessen:

logistics-3125131_1920

Predictive Analytics in der Logistik

Predictive Analytics wird auf alle Facetten des Geschäftsbetriebs und der zugehörigen Prozesse angewendet, um Ereignisse zu antizipieren, Risiken zu vermeiden und Lösungen zu schaffen. Durch die Vorhersage zukünftiger Lieferketten und logistischer Ereignisse können Unternehmen einen Wettbewerbsvorteil erlangen und finanzielle Verluste durch ungenaue Bevorratung, Lieferungen und Zeitvorgaben vermeiden. Predictive Analytics verbessert die Lieferkette und die Logistikbranche, indem es in der Lage ist, Daten exakt zu sammeln und zu analysieren, die bei Managemententscheidungen helfen. Es kann auch helfen, Probleme wie beschädigte oder fehlerhafte Lagerbestände und Fehlberechnungen von Angebot und Nachfrage zu beheben. Unternehmen können prädiktive Erkenntnisse für die Lieferkette und die Logistik auf unterschiedliche Weise nutzen. Hierzu gehören die unten genannten: